skip to main content


Search for: All records

Creators/Authors contains: "Zheng, Hongrui"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The rising popularity of self-driving cars has led to the emergence of a new research field in the recent years: Autonomous racing. Researchers are developing software and hardware for high performance race vehicles which aim to operate autonomously on the edge of the vehicles limits: High speeds, high accelerations, low reaction times, highly uncertain, dynamic and adversarial environments. This paper represents the first holistic survey that covers the research in the field of autonomous racing. We focus on the field of autonomous racecars only and display the algorithms, methods and approaches that are used in the fields of perception, planning and control as well as end-to-end learning. Further, with an increasing number of autonomous racing competitions, researchers now have access to a range of high performance platforms to test and evaluate their autonomy algorithms. This survey presents a comprehensive overview of the current autonomous racing platforms emphasizing both the software-hardware co-evolution to the current stage. Finally, based on additional discussion with leading researchers in the field we conclude with a summary of open research challenges that will guide future researchers in this field. 
    more » « less
  2. Escalante, Hugo Jair ; Hadsell, Raia (Ed.)
    The deployment and evaluation of learning algorithms on autonomous vehicles (AV) is expensive, slow, and potentially unsafe. This paper details the F1TENTH autonomous racing platform, an open-source evaluation framework for training, testing, and evaluating autonomous systems. With 1/10th-scale low-cost hardware and multiple virtual environments, F1TENTH enables safe and rapid experimentation of AV algorithms even in laboratory research settings. We present three benchmark tasks and baselines in the set- ting of autonomous racing, demonstrating the flexibility and features of our evaluation environment. 
    more » « less
  3. null (Ed.)
    TUNERCAR is a toolchain that jointly optimizes racing strategy, planning methods, control algorithms, and vehicle parameters for an autonomous racecar. In this paper, we detail the target hardware, software, simulators, and systems infrastructure for this toolchain. Our methodology employs a parallel implementation of CMA-ES which enables simulations to proceed 6 times faster than real-world rollouts. We show our approach can reduce the lap times in autonomous racing, given a fixed computational budget. For all tested tracks, our method provides the lowest lap time, and relative improvements in lap time between 7-21%. We demonstrate improvements over a naive random search method with equivalent computational budget of over 15 seconds/lap, and improvements over expert solutions of over 2 seconds/lap. We further compare the performance of our method against hand-tuned solutions submitted by over 30 international teams, comprised of graduate students working in the field of autonomous vehicles. Finally, we discuss the effectiveness of utilizing an online planning mechanism to reduce the reality gap between our simulation and actual tests. 
    more » « less